
Finding the Right Teacher for a

Difficult Student

Daniel Whettam

Master of Science

Data Science

School of Informatics

University of Edinburgh

2020



Abstract

Network distillation is an approach to effectively training neural networks when

constrained by the size of the network. Network distillation (Ba and Caruana, 2014;

Hinton et al., 2015; Zagoruyko and Komodakis, 2016a) uses a large teacher network

to guide the learnt representation of the network of interest, the student.

This project is an investigation into how to best determine an effective teacher for

a given student when using network distillation, with a particular focus on cases where

the student is of a non-standard architecture, such as one generated through neural ar-

chitecture search. Specifically, we use Differentiable Architecture Search (DARTS)

(Liu et al., 2019) to generate our non-standard architectures. We explore two key

strands within the general objective of determining an effective teacher network for

the student. Firstly, we explore different teacher-student pairings, comparing models

generated through neural architecture search with readily available, pre-trained mod-

els such as a WideResNet (Zagoruyko and Komodakis, 2016b) and DenseNet (Huang

et al., 2017). We find that both the WideResNet and DenseNet models pair well to-

gether, and both models struggle to teach a student generated through DARTS effec-

tively. We conclude that, in general, the best teacher for any student is the one that

is most similar to the student. We evaluate this finding through an in-depth discus-

sion and analysis of the results and visualisation of the attention maps for a variety of

teacher-student pairings.

Secondly, we propose a novel approach to developing a teacher network from the

student that uses Fisher information to determine which cells in the network to grow.

We grow the cells by reducing the number of groups in the grouped convolutions that

occur within that cell, effectively increasing the number of channels in the cell. We

call this approach Fisher expansion and demonstrate that it gives improved results over

a student trained independently, a student trained using a teacher developed through

a depth-wise scaling, as well as a teacher developed through a uniform growth of the

cells. We use these results to confirm our hypothesis that what is most important when

choosing a teacher-student pairing is the similarity between the two architectures and

that a channel-wise scaling of a model creates a much more effective teacher architec-

ture than a depth-wise scaling.
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Chapter 1

Introduction

The use of neural networks has become widely established within the machine learn-

ing community since the introduction of AlexNet (Krizhevsky et al., 2012), developing

into a sub-field known as deep learning. Deep learning attempts to approximate com-

plex functions through the stacking of many layers of non-linear functions. These

functions consist of weights which are updated through an optimisation procedure

that minimises an error function. Through the error-function-minimisation process,

a neural network can approximate the function that is being learnt. This general pro-

cedure accounts for a large amount of the successes within machine learning. Work

(Simonyan and Zisserman, 2015; Szegedy et al., 2015) with convolutional neural net-

works (LeCun et al., 1998) has demonstrated that increasing the depth of neural net-

works offers significant performance gains; this follows a natural intuition that deeper

networks allow for more complex functions to be learnt as a result of stacking increas-

ing numbers of non-linearities. As a result of increasing the depth of a network, the

number of parameters required can quickly become very large; this is not a problem

on a large desktop computer; however, it can present issues when trying to run deep

learning models on memory-restricted devices. This dissertation investigates ways

to maintain the performance of deep neural networks while using fewer parameters.

We experiment with network distillation (Ba and Caruana, 2014; Hinton et al., 2015),

which uses a teacher network to teach a smaller student. Our work focuses on cases

where the student is of some non-standard architecture, for example, networks gen-

erated through Differentiable Architecture Search (DARTS) (Liu et al., 2019). We

consider a non-standard architecture to be any network that is not widely available,

such that an effective teacher cannot be easily downloaded from an online repository.

Specifically, we investigate teacher-student pairings with readily available models and
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Chapter 1. Introduction 2

DARTS models and propose a modelling approach for developing a teacher model

from the student.

1.1 Motivation

The performance of deep neural networks is largely limited by the number of learn-

able parameters in the network (LeCun et al., 2015), thus motivating the development

of very deep networks (Shazeer et al., 2017). However, while deep networks can be

very effective, they require large amounts of memory for storage, as well as huge

amounts of compute power for training purposes. It has been widely demonstrated

that many of the parameters within a neural network are largely redundant, suggest-

ing that it may be possible to reduce the number of parameters required by many very

deep networks, while at the same time maintaining performance. For example, Denil

et al. (2013) are able to predict all of the weights of a model from only a small sub-

set of the models’ weights and demonstrate that many of the weights do not need to be

learnt at all. Frankle and Carbin (2019) suggest that for any dense, randomly initialised

feed-forward network, there exists a smaller sub-network that is capable of reaching

comparable performance to the full network when trained independently, with a sim-

ilar training budget. While this over-parameterisation is well established, it remains a

challenge to train a network that does not have many redundant parameters.

One approach to tackling this problem of over-parameterisation is network distilla-

tion. In network distillation learnt representations from a larger (teacher) network are

used to improve the performance of the typically smaller (student) network, although

there are some exceptions (Furlanello et al., 2018). When trained on just the original

labelled data, the student does not perform as well as the teacher. With distillation,

the student network utilises the learnt representations of the teacher network to im-

prove its performance. Distillation addresses the problems of over-parameterisation

by maintaining the performance of the larger network in a model with significantly

fewer parameters.

An important question within network distillation is how best to determine the ar-

chitectures for these teacher and student networks. In cases where the student is a

standard, off-the-shelf architecture, such as ResNet (He et al., 2016a), or DenseNet

(Huang et al., 2017), a teacher of that same architecture can be used (Crowley et al.,

2018). However, in cases where the student is particularly non-standard, it becomes

difficult to determine an effective architecture for the teacher. If the student network
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is the product of some Neural Architecture Search (NAS) algorithm (Liu et al., 2019;

Zoph et al., 2018), then determining a good teacher architecture becomes even more

challenging. NAS is an automated approach to finding effective neural network archi-

tectures. This project tackles the question of how to determine a good teacher archi-

tecture for a given student network, with particular focus on cases where the student

network may be difficult or non-standard (e.g. NAS). Through addressing this problem

we hope to increase the applicability of network distillation in scenarios where very

non-standard architectures are in use, hopefully increasing the potential of memory-

constrained devices (e.g. mobile phones) to utilise neural network-based technologies.

1.2 Objectives

The overall aim of the project is to determine how best to select a teacher architecture

given a student network obtained through some NAS approach. As a result, we hope

to gain some understanding as to the most effective network pairings for distillation

purposes. We will approach our aim through the following objectives:

1. Investigate how effectively off-the-shelf teacher architectures can perform at ob-

ject recognition when using a non-standard student architecture.

2. Develop an effective approach to modelling a teacher architecture when given a

student network.

Following these objectives, there are a few key considerations. Most likely, some

modelling process is necessary to develop an effective teacher architecture. However, it

is also possible that by using a deeper NAS model as the teacher, and a shallower model

as the student, comparable results can be achieved. Additionally, it is also possible

that expanding a student using Fisher information may not offer any increased gains

in performance; this should be tested by a comparison between a Fisher expanded

teacher, and a NAS model that is scaled up in a naive fashion.

1.3 Contributions

This work presents two key contributions. Firstly, we implement a DARTS model

into a distillation code-base. Using this implementation, we then provide experimental

results for distillation with a range of teacher-student combinations, including mod-

els derived through a DARTS NAS process on CIFAR-10 — a standard benchmark
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dataset for image recognition. These results show that DARTS students typically

under-perform when using either WideResNets or DenseNets as a teacher network.

We also show that when a DARTS model is used as a teacher, it provides competi-

tive results, and offers the best results for a DARTS student without using any sort of

teacher modelling process. From these empirical results, we offer intuition regarding

the sorts of network architectures that pair well together for distillation, suggesting that

similar architectures tend to outperform architectural pairings that are less alike.

Secondly, we introduce and implement a new algorithm, Fisher expansion, for scal-

ing up a DARTS network using Fisher information to rank the cells in a DARTS model.

Using this cell ranking, we increase the capacity of the most impactful cells by reduc-

ing the number of groups in any grouped-convolution operations that occur within the

cell. While applied specifically to DARTS models, our approach to scaling up a net-

work could be applied to many different architectures. We provide experimental results

of distillation for architectures derived using our Fisher expansion algorithm. Our re-

sults show that teachers created by expanding a student using its Fisher information

outperform a teacher obtained by scaling the depth of the student, as well as a teacher

that is developed from a naive, uniform channel expansion of the student.

1.4 Outline

Following this introductory chapter, Chapter 2 will cover all necessary background

knowledge, including a discussion of the relevant literature. Chapter 3 will give a de-

tailed explanation of our method, explaining how we go about using Fisher information

to expand a student model, as well detailing our approach for testing distillation with

combinations of off-the-shelf networks and NAS-derived models. Chapter 4 lays out

our experiments and results. Chapter 5 provides discussion and analysis of the results,

and Chapter 6 concludes our findings.



Chapter 2

Background

2.1 Deep Learning

As mentioned in the previous chapter, since the introduction of AlexNet in 2012, deep

learning has become an extremely popular and effective branch of machine learning.

Within computer vision, the state of the art for many important and difficult tasks

such as object detection (Li et al., 2019), semantic segmentation (Zhu et al., 2019),

and image recognition (Tan and Le, 2019) use deep learning, primarily with convolu-

tional neural networks (LeCun et al., 1998) (CNN). Two popular and widely used CNN

architectures are DenseNet (Huang et al., 2017) and WideResNet (Zagoruyko and Ko-

modakis, 2016b). These models are very standard within image recognition and will

be used as both teachers and students within our network distillation experiments. Typ-

ically, deep learning architectures are developed through a manual, iterative process,

whereby authors may suggest improvements upon the previous state-of-the-art. Alter-

natively, architectures can also be developed through neural architecture search, which

automates the process of finding deep learning architectures using a variety of possible

approaches, such as reinforcement learning, and evolutionary algorithms.

2.1.1 Convolutional Neural Networks

Convolutional neural networks are a type of neural network typically used for computer

vision tasks (e.g. image recognition, semantic segmentation). However, CNNs also

have some application in other fields, such as speech recognition (Collobert et al.,

2016). Standard feed-forward neural networks learn weights for each input dimension

at each layer. In contrast, CNNs use a fixed kernel of weights that slides over the input
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(typically an image) and compute the dot-product between the kernel and image as

the kernel moves across the image. The output is passed through a non-linearity, and

the process is repeated, resulting in a deep network. The network is then optimised

through some method of gradient descent, most commonly stochastic gradient descent

(SGD) (Robbins and Monro, 1951).

Instead of inputting a raw image into a CNN, the image is typically split into chan-

nels (C), usually corresponding to the red, green and blue channels of the input image.

As the input propagates through the network, these channels become more abstract and

may increase in number. The kernel of weights also consists of channels, one for each

of the input channels at the current layer. The total number of parameters in each layer

of this network is then given by the number of channels multiplied by the height and

width of the kernel: C ∗ h ∗w. It is often standard practice to split the input along the

channel dimensions, performing a smaller convolution on each group, and then con-

catenating the results to create an output. This process of splitting the input is referred

to as a grouped convolution (Figure 2.1).

Figure 2.1: Figure from Ioannou (2017). In grouped convolutions, the input is split

along the channel dimension, and the corresponding weights perform a convolution

only on that subset of the input. After performing the convolutions, the outputs are then

concatenated to create the final result.

By splitting the convolutions into groups, the number of parameters in the network

is reduced. In the example shown in Figure 2.1, two groups are used. If the number of

channels in each group is given by Cn/g, the total number of parameters used would

be C1/g∗C2/g∗h1 ∗w1 ∗g, which is equivalent to C1 ∗C2 ∗h1 ∗w1 ∗ (1/g), the original

number of parameters divided by the number of groups. Assigning the number of

groups equal to the number of channels is referred to as a depth-wise convolution, and

gives the fewest number of parameters. A single group is equivalent to a standard
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convolution and does not reduce the parameter count.

2.1.2 Wide Residual Networks

The WideResNet model (Zagoruyko and Komodakis, 2016b) (WRN) is an improve-

ment upon an earlier model, known as ResNet (He et al., 2016a). As it has become

increasingly clear that deep neural networks offer an increased representational power

over their shallower counterparts (Bianchini and Scarselli, 2014), being able to effec-

tively train these very deep networks has become an important research area. Training

deep models is a difficult task due to issues of degradation (He et al., 2016a), where

the model’s accuracy begins to saturate, and then degrade, as depth increases. ResNet

introduced a deep learning framework that can be easily trained, even when very deep.

The key idea of this framework is the use of skip-connections. Instead of stacking

layers in the normal fashion, a skip-connection is an identity mapping from previous

layers to later layers (Figure 2.2). By incorporating these identity mappings, a deeper

network should perform at least as well as its shallower counterpart; by using identity

mappings for all later layers, the shallower network can be recreated. ResNets combine

the identity mapping with the standard output through a simple summation, creating a

single output to be passed into the next layer.

Figure 2.2: Figure from He et al. (2016a). The skip-connection and identity mapping

introduced by ResNets. This increases the ability of the information in earlier layers to

flow into the later layers of the network, allowing deeper networks to better utilise their

increased representational power.

The key contribution of WideResNet is to increase the width of the convolutional

layers in a residual network. The authors introduce a widening factor, k, that multiplies

the number of features in each convolutional layer. Through increasing both depth and

width, WideResNets offer an improvement in performance over the standard ResNet.
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However, as the depth and width increase, so do the number of parameters, and the

potential to overfit. In order to combat overfitting, a dropout layer (Srivastava et al.,

2014) is added into each residual block, increasing performance on CIFAR-10 and

CIFAR-100 by 0.11% and 0.4%, respectively.

Figure 2.3: Figure from He et al. (2016b) Left: Post-activation - BatchNorm and ReLu

are happening after the weight multiplication

Right: Pre-activation - BatchNorm and ReLu are happening prior to the weight multipli-

cation

Additionally, WideResNets use pre-activation (He et al., 2016b), instead of the

standard post-activation. Typically the activation function and batch normalisation

(Ioffe and Szegedy, 2015) are applied after an affine transformation of each layers

inputs, whereas pre-activation applies the activation function (e.g. ReLu) and Batch-

Norm before the affine transformation (Figure 2.3), and has been shown to give im-

proved results (He et al., 2016b).

2.1.3 Dense Convolutional Networks

DenseNets provide a simple extension to the ResNet idea of skip-connections - con-

necting every layer in a network to every other layer via an identity mapping (Figure

2.4). In addition to connecting every layer, DenseNets concatenate the outputs, instead

of summing them. This concatenation means the lth layer will have l inputs, corre-

sponding to the feature maps for all of the previous layers. Similar to WideResNets,

DenseNets use a parameter, k, to refer to the models’ growth rate. The growth rate

determines how the number of feature-maps grows with each layer of the network.
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Figure 2.4: Figure from Huang et al. (2017). A 5-layer DenseNet, showing the identity

mappings between every layer.

As well as the standard DenseNet, the authors introduce a modified version, re-

ferred to as DenseNet-BC. DenseNet-BC incorporates bottleneck and compression

layers. The bottleneck layer introduces a simple 1x1 convolution before each 3x3

convolution, reducing the number of input feature maps. The compression layer re-

duces the number of feature maps in transition layers (layers between dense blocks).

The transition layer has θm feature maps, where m is the number of feature maps in

the previous dense block. When compressing the transition layer, θ <1 ensures the

transition layer will have a reduced number of feature maps. The DenseNet-BC model

tends to produce better results (4/5 best results use DenseNet-BC) while reducing the

number of parameters.

DenseNet offers a significantly improved framework for training deep neural net-

works, while also reducing the number of parameters needed to train an effective

model. By concatenating the outputs from each layer (instead of summing), any layer

can directly access the feature maps of all previous layers, allowing for a much more

compact model.

2.2 Neural Architecture Search

Neural architecture search is the process of finding neural network architectures through

an automated search. Elsken et al. (2019) categorise NAS research into three key ar-

eas: search space, search strategy, and performance estimation strategy. The search

space defines the set of possible architectures, search strategy defines the process by
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which an architecture is found, and performance estimation is the way in which the

performance of each network is estimated. It is possible to estimate performance by

training each model and evaluating it on held-out data; however, this approach is very

expensive. Consequently, methods of estimating the performance of a model have been

developed, avoiding the need to train and evaluate each architecture.

There are several approaches to NAS including reinforcement learning (Zoph et al.,

2018) and evolutionary algorithms (Real et al., 2018). Both of these approaches can

be very effective. However, they have a significant drawback - they are extremely

computationally expensive. There is ongoing work to reduce the computational de-

mand; however, both reinforcement and evolutionary approaches remain exceedingly

resource intensive. As an example, Zoph et al. (2018) propose a reinforcement learn-

ing NAS approach that is 7x quicker than the previous state-of-the-art, yet still takes

a considerable 2,000 GPU hours of searching. An alternative approach is to explore

the search space via gradient descent. DARTS (Liu et al., 2019) relaxes the search

space from discrete to continuous and then uses gradient-based optimisation to find an

effective architecture. This approach is significantly less onerous than the previously

mentioned methods yet still achieves very competitive results.

Formally, each DARTS cell can be considered as a directed acyclic graph. Each

node, xi, on the graph is some latent representation, such as a feature map in CNNs, and

each edge, (i, j), on the graph corresponds to an operation, o (e.g. max pool). There-

fore, o(i, j) would refer to the operation taking place along edge (i, j). Each node is

computed by applying the relevant operation to each of its predecessors, and summing

the result:

x( j) = ∑
i< j

o(i, j)
(

x(i)
)

(2.1)

The process of finding a cell is split into three steps. Beginning with unknown

operations on each of the edges, the model first relaxes the search space by placing

multiple candidate operations along each edge. A joint optimisation procedure is then

performed to optimise the mixing probabilities and network weights. Finally, the final

architecture is determined by selecting the most probable operations. Cells are then

stacked into the required number of layers, creating the final architecture. Cells that

are at 1/3 and 2/3 of the total depth are converted into reduction cells, in which all

operations adjacent to the input nodes have an increased stride of 2. As a result of the

increased stride there are fewer parameters in the network, and a different graph for
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the reduction cells is typically found.

2.3 Fisher Information

Fisher information is a measure of how much information a known variable, X , con-

tains about an unknown parameter, θ, (Lehmann and Casella, 2006) and is formally

defined as in Equation 2.2.

I(θ) = Eθ

[
∂

∂θ
log f (X ;θ)

]2

=
∫ (

∂

∂θ
log f (x;θ)

)2

f (x;θ)dx (2.2)

Fisher information can be interpreted as the variance of the score, where score is

the gradient of the log-likelihood with respect to the model’s parameters. Setting the

score to 0 gives the maximum likelihood estimation for the parameters in our model.

Fisher information is the variance of this maximum likelihood estimate, which allows

us to understand how certain our estimate is. Following this interpretation, Fisher

information can be written as:

I(θ) = Varθ

[
∂

∂θ
log f (X ;θ)

]
(2.3)

where ∂

∂θ
log f (X ;θ) is the derivative of the log-likelihood. Fisher information can

be applied to a deep learning setting, allowing us to estimate the change in our loss

function, L(θ), with some change in parameters, d. Theis et al. (2018) apply this idea

to prune the channels of a network and derive an approximation for the change in loss

that would occur with the removal of a channel in a neural network:

g = ∇L(θ), H = ∇
2L(θ)

L(θ+d)−L(θ)≈ g>d+
1
2

d>Hd
(2.4)

Measuring the change in loss when dropping the kth parameter is then given by

setting d =−θkek, where ek is a vector of zeros, except for position k, where it is 1:

L (θ−θkek)−L(θ)≈−gkθk +
1
2

Hkkθ
2
k (2.5)

Following similar work using second-order approximations, Theis et al. (2018) re-

move the first term, as it vanishes as we average over the dataset. In practice, including

the first term also seems to reduce performance. Following further assumptions of
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the nature of the Hessian, H, and adjusting to get the Fisher information for entire

channels, not just individual parameters, the final estimated change in loss becomes:

∆c =
1

2N

N

∑
n=1

g2
nc (2.6)

where g2
nc is the gradient with respect to the nth data point for the channel of inter-

est, c.

Theis et al. (2018) use this formulation for network pruning, where they compress

a network by removing channels that have the lowest Fisher score. In our case, we are

not interested in pruning a model but wish to expand it. Instead, we will use Fisher

information to determine which cells in our network have the largest impact on the loss

function and expand these cells by increasing the number of channels.

2.4 Network Distillation

Network distillation is an approach to distilling the knowledge of a deep neural network

into a network with fewer parameters in such a way that the smaller model can perform

similarly to the original network. To do this, there are two standard approaches: knowl-

edge distillation (Ba and Caruana, 2014; Hinton et al., 2015), and attention transfer

(Zagoruyko and Komodakis, 2016a). Knowledge distillation encourages the student

to produce outputs that are similar to the teacher network, while still minimising its

own loss between its output and the target labels. Attention transfer encourages the

attention maps of the teacher and student at specified layers to be similar, whilst also

minimising the loss between the students’ output and the target labels.

2.4.1 Knowledge Distillation

Ba and Caruana (2014) laid the groundwork for knowledge distillation in their 2014

paper, which allowed the performance of deep networks to be maintained in a model

with fewer parameters. Their approach is to train a student network using the outputs

of the teacher network as the target labels for the student. In this work, the student

network is not trained using the standard approach of cross-entropy on the outputs of

a softmax layer. Instead, the student models are trained directly on the values before

softmax activation; these values are referred to as logits, and equate to the logarithm of

the predicted probabilities output by a softmax layer. By replacing the true labels with

the teacher’s outputs, the student can re-create the learnt representation of the teacher.
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Hinton et al. (2015) built upon the work of Ba and Caruana, proposing a knowl-

edge distillation approach that not only attempts to replicate the teacher network’s out-

puts, but also attempts to correctly predict the original target labels. Given a teacher,

t = teacher(x) and student s = student(s), the student can be trained using knowledge

distillation as follows (Crowley et al., 2018):

LKD = (1−α)LCE(y,σ(s))+αT 2LCE

(
σ

(
t
T

)
,σ

( s
T

))
(2.7)

where σ is a softmax function, α controls the ratio between the two terms, and T is a

”temperature” term. A high temperature produces a softer probability distribution over

classes. The first term is a standard cross-entropy loss between the students predicted

output and the true labels. The second term is the cross-entropy loss between the

student and teacher’s predictions. To minimise this loss the student network has to

correctly predict the target labels whilst also having a similar output to the teacher

network.

2.4.2 Activation Based Methods

Attention transfer (Romero et al., 2015; Zagoruyko and Komodakis, 2016a) is an alter-

native approach to network distillation where intermediate representations at specified

layers are used to guide the student network when training. Attention transfer is the

approach we will use for all of our distillation experiments.

Romero et al. (2015) introduce FitNets, which propose the use of hints; the outputs

of a teacher network are used to guide the student network at a particular layer. These

hints act as a form of regularisation, limiting the student networks ability to overfit

the training data. By selecting which layer to hint, the extent of the regularisation

can be determined; hinting later layers applies stronger regularisation while hinting

earlier layers gives the student greater flexibility. To perform this hinting, the authors

proposed a loss function that encourages the output of the teacher and student networks

to be similar at a specified layer, guiding the student towards the learnt representations

of the teacher at that point. The loss function is formulated as follows:

LHT (WGuided,Wr) =
1
2
‖uh (x;WHint)− r (vg (x;WGuided) ;wr)

∥∥2 (2.8)

where uh and vg are the teacher and student networks, respectively, up to the guided

layer. WGuided is the parameters of the guided student, WHint the parameters of the

teacher, and Wr the parameters of a regressor function, r, on top of the guided layer.
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As the teacher will typically be wider than the student (FitNet), a regressor is added to

the layer being guided. This regressor has an output that matches the size of the hint

layer.

Zagoruyko and Komodakis (2016a) build upon this idea, proposing the complete

attention transfer method that is commonly used. Instead of using the outputs of each

network at specific layers, attention transfer uses the attention maps of each network.

The attention maps are defined by spatial maps of the activations at each layer of

interest. The final loss function is then constructed as:

LAT = LCE(y,σ(s))+β

NL

∑
i=1

∥∥∥∥∥ f(At
i)∥∥f(At

i)
∥∥

2
−

f(As
i )∥∥f(As

i )
∥∥

2

∥∥∥∥∥
2

(2.9)

with some choice of layers i = 1,2, ...,NL, and Ai representing the set of spatial maps

of the activations for all of the channels in the teacher (t) or student (s).

The first term in the loss function is a standard cross-entropy loss. The second term

is now encouraging the spatial distributions of the teacher and student activations to

be similar at the specified layers. This new loss function encourages the student to pay

attention to the same salient features that the teacher is attending to.

While both knowledge distillation and attention transfer are effective approaches

for compressing a teacher network or enhancing the performance of a student, the orig-

inal attention-transfer paper, as well as more recent work (Crowley et al., 2018; Turner

et al., 2019b), suggests that attention transfer is the more effective approach. It is also

possible to combine both approaches by including the second term of the knowledge-

distillation loss function into the attention-transfer loss. Using both attention transfer

and knowledge distillation has the effect of encouraging both the spatial distributions

and outputs of the student to be similar to the teacher.

2.5 Related Work

As far as we are aware, there has been no work on developing a teacher network when

given a student, making this project of particular interest. However, there has been

work that does the reverse — developing a student network when given the teacher.

Crowley et al. (2018) develop an approach that they call Moonshine. Moonshine

does not perform any reduction of the teacher through reducing depth or width, but

instead replaces the convolutional operations with a cheaper alternative. The cheaper

convolutions proposed are grouped convolutions and bottlenecks. The grouped-convolution
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approach separates the convolutions into g groups. Separating the convolutions into

groups limits the convolutions by allowing channel mixing only within groups, and

also reduces the number of parameters required. The authors then apply some inter-

group mixing by performing a point-wise convolution after each grouped convolution.

These grouped convolution are denoted as G(g). The authors also define a bottleneck

block, B(b). The bottleneck block reduces the number of channels through a point-

wise convolution, a full convolution on the reduced parameters, and finally another

point-wise convolution to return the number of channels to their original size.

Turner et al. (2019b) propose an alternative approach to developing a student from

the teacher, via Fisher pruning. The authors use Fisher information (Eq. 2.6) to ap-

proximate the change in error with the removal of a channel. The Fisher information

can be computed across all channels, and the channels with the smallest signal are re-

moved. A small Fisher information value indicates that a channel will have a small

impact on the loss and, therefore, does not contribute much to the learning process.

Taking inspiration from both Crowley et al. (2018) and Turner et al. (2019b),

BlockSwap (Turner et al., 2019a) is an approach, similar to Moonshine, that replaces

convolutional blocks with a cheaper alternative, and then uses the newly created net-

work as a student for distillation. However, unlike Moonshine, BlockSwap considers

a range of different types of cheap convolutional blocks; it uses Fisher information

to determine which combination of blocks is best and uses the resultant network as a

student for distillation. One approach would be to test every possible combination of

the different blocks and determine which gives the best performance. However, ex-

haustively searching through all the possible combinations can quickly become very

expensive. BlockSwap takes an alternative approach; block configurations are ran-

domly sampled and ranked by their Fisher score. The Fisher score is determined using

Equation 2.6 after each block, and the score is summed across the entire network. The

network configuration with the largest Fisher score is then trained and used as a student

network for distillation, and the original network before applying BlockSwap is used

as the teacher.

All of these approaches provide interesting and useful solutions for developing a

student for distillation when a trained teacher is already available. However, they all

share a common weakness, in that they all produce a student network when a teacher

is already available; they do not help if all that is available is the network that is is to

be deployed — i.e. the student. In the case where the only available network is the

student, none of the above are of use in determining an effective teacher, particularly
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in cases where the student is non-standard.

2.6 Datasets

The majority of the research carried out in this project will use the popular CIFAR-

10 dataset (Krizhevsky and Hinton, 2009). CIFAR-10 is a labelled subset of the 80

million tiny images dataset (Torralba et al., 2008). The dataset consists of 60000 32x32

images, with ten separate classes. The training set consists of 50000 images, and 10000

are left for the test set. CIFAR-10 is a widely used dataset that makes it very useful for

comparison against previous work while also being small enough to run experiments

in a period of hours, not days. Figure 2.5 shows the ten classes used in CIFAR-10, as

well as example images for each class.

Figure 2.5: Modified figure from Krizhevsky and Hinton (2009). Example images for

each of the 10 classes in CIFAR-10
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Methodology

As discussed in the preceding chapter, previous work has made use of Fisher infor-

mation to create student networks from a teacher (Turner et al., 2019a; Turner et al.,

2019b). In this work, we take a similar approach and use Fisher information to grow a

teacher network from a student found through NAS.

3.1 Off-The-Shelf Teacher Networks

We begin our work by investigating the performance of network distillation using a

student network obtained through a DARTS search on CIFAR-10. We chose a DARTS

model as it is very competitive with the state-of-the-art in NAS, is much quicker than

many alternative approaches (see Section 2.2), and has an official implementation that

is widely available1. This implementation includes many of the models found for dif-

ferent datasets. As a result, we do not have to do any architecture searching ourselves

as models found for CIFAR-10 are readily accessible. Figure 3.1 shows the cells we

used for all of our DARTS models. We will refer to models created using this cell

structure as DARTS V1 models.

The DARTS model shown in Figure 3.1 was integrated into a pre-existing network

distillation codebase. In order to integrate the DARTS models, it was essential to

modify them such that they returned the activations at multiple layers, as needed for

attention transfer (Eq. 2.9). For each model, three activations were returned, spread

evenly across the layers of the network, prior to any pooling operations.

As discussed in Section 2, we will use DenseNets and WideResNets as our off-
1https://github.com/quark0/darts
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Figure 3.1: Top: Normal cell found for CIFAR-10. Bottom: Reduction cell found for

CIFAR-10. Both cells were were provided by the authors so searching on CIFAR was

not necessary (Figures were created using the provided visualize.py script).

the-shelf teacher networks. We integrated pre-trained models on CIFAR-10 2 into the

codebase, modifying them to return activations in the same manner as with the DARTS

models.

The DARTS, DenseNet, and WideResNet models can now be trained via attention

transfer as both a student and a teacher, giving nine possible teacher-student combina-

tions. When using an off-the-shelf model as a teacher, a pre-trained model that is larger

than the student is used. When the DARTS model is used as a teacher, that model must

be trained independently before it can be used as a teacher for attention transfer or

knowledge distillation. The training of the DARTS teacher follows the experimental

setup described in Section 4.1.

3.2 Distillation with a Fisher Expanded Student

In this section, we introduce our two-step process for distilling with a DARTS student

and expanded DARTS teacher.

2https://github.com/osmr/imgclsmob

https://github.com/osmr/imgclsmob
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To develop the expanded teacher, we use Fisher information as a sensitivity met-

ric to expand our DARTS student model, creating a teacher for network distillation.

Using Equation 2.6, we can approximate the change in error with the removal of each

channel for each cell in our DARTS student network. Using this Fisher information it

is possible to create a measure of Fisher sensitivity on a per-cell level by summing the

Fisher score, ∆c (Eq. 2.6), across all of the channels within each cell:

∆cell =
C

∑
1

∆c (3.1)

This idea is inspired by Turner et al. (2019a), who take the same approach to ap-

proximate the impact of each cell on the loss function. In order to compute the Fisher

information for each cell, we insert a Fisher probe after the final operation in each cell

that is updated during the backward pass, using the most recent gradients to compute

the Fisher information. Turner et al. (2019a) found that the placement of the Fisher

probe was inconsequential; placing the probe at the end of each cell will not be de-

pendent on that cells specific operations and will provide consistent results. Starting

from a trained student, we push a single mini-batch through our model to get the Fisher

information for each cell. Turner et al. (2019a) then sum the total Fisher score across

the entire network, producing a final measure of the parameters’ ability to impact the

loss function (this can be interpreted as the networks’ ability to use its parameters ef-

fectively). In this work, we take a different approach, where we maintain our Fisher

scores on a cell-level and use this to rank the ability of each cell to impact the loss.

Upon ranking each cell by its Fisher score, we then decrease the group size of all ap-

plicable operations within the highest ranking cell. By default, the group size is equal

to the number of channels, giving a depth-wise convolution (Sifre and Mallat, 2014).

After pushing a mini-batch through the network and ranking the cells according to

their Fisher score, we halve the number of groups for all operations that use grouped

convolutions. Another mini-batch is then pushed through the network, and the process

is repeated. If the top-ranking cell has only one group, we then reduce the number of

groups in the next highest scoring cell.

Grouped convolutions are a way of reducing the number of parameters in a model,

so by reducing the number of groups, we are increasing the number of parameters in

cells with high Fisher scores. Reducing the number of groups in this manner is effec-

tively enhancing the representational power of cells that are utilising their parameters

most effectively. Our process of pushing a mini-batch through and growing the ap-
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propriate cell continues until the resultant model is within 2.5% of the required model

size. Our process of growing the size of our network can be considered an example

of network morphism (Wei et al., 2016) - a general approach to morphing a trained

neural network while maintaining the function of the network. Algorithm 1 describes

the process in more detail:

model = DARTS V1-10;

while params < param goal do
probes = model(mini-batch);

∆cell = sum(probes);

sort(∆cell);

for i, probe in ∆cell do
if cell[i].grow() == success then

break

end

end
params = paramCount(model)

end
Algorithm 1: Our process for expanding cells in a model using Fisher information

as a sensitivity metric. Cells with the highest Fisher score are expanded first, until

they have reached 1 group (returning false). Then the next highest cell is used.

Upon obtaining a complete model through our Fisher expansion process, this new

model is used as a teacher for network distillation, with the original DARTS V1 model

as the student. Specifically, this will use attention transfer to be comparable to the pre-

vious work described in Section 3.1. In order to understand the utility of our method, it

should be compared to using a standard, larger DARTS model as the teacher, and also

one that is expanded in a naive fashion.
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Experiments and Results

4.1 Experimental Setup

All experiments conducted in the following chapter use the same fundamental setup.

Any changes from this setup will be mentioned explicitly where appropriate. All mod-

els are trained for a total of 200 epochs, with a learning rate of 0.1, a batch size of 64,

and 16 initial channels. Models are optimised through SGD, and the MultiStepLR1

scheduler is used to decay the learning rate at specified epoch milestones. In our case,

these milestones are the 60th, 120th, and 160th epoch. At each of these epochs, the

learning rate is decayed by a ratio of 0.2. The loss function used is a cross-entropy

loss2 and all models are trained and evaluated on CIFAR-10.

4.2 Off-the-shelf Teacher Networks

As discussed in Chapter 3, we begin by testing our DARTS model (Figure 3.1), a

DenseNet and a WideResNet. A standard WideResNet model is used without dropout

layers. We test all nine possible configurations of these models with the setup shown

in Table 4.1. Each student model has approximately 7×105 parameters, and each

teacher, approximately 1.4×106 parameters, making the student models about half

the size of each teacher model. Combinations of each of the models in Table 4.1,

were then trained using attention transfer. These experiments included each model

with itself (e.g. dense teacher + dense student), giving a total of 9 combinations. Each

experiment is performed three times to ensure that our results are consistent. The error

1https://pytorch.org/docs/stable/optim.html
2https://pytorch.org/docs/stable/nn.html

21

https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/nn.html


Chapter 4. Experiments and Results 22

bars allow for an understanding of how much variation we see across results and are

given by the mean error ± standard deviation.

Model Teacher/Student Parameters Model Details

DARTS Teach 1354980 DARTS V1-25

Student 774260 DARTS V1-10

DenseNet Teach 1542682 DenseNet-BC-40 (k = 36)

Student 769162 DenseNet-BC-100 (k = 12)

WRN Teach 1467610 WRN-28 (k = 2)

Student 691674 WRN-16 (k = 2)

Table 4.1: Model details for performing distillation using combinations of DARTS,

WideResNet and DenseNet. The parameter, k, refers to the models widening factor

(WRN) or growth rate (DenseNet). The additional number in the model names refers

to the number of layers in the model (DARTS V1-10 has 10 layers). Each model was

selected such that the number of parameters in the teachers was approximately twice

that of the students.

Teacher Student Top-1 Error Top-5 Error

DenseNet DenseNet 6.3000 ± 0.35 0.1833 ± 0.02

DenseNet WRN 6.2467 ± 0.12 0.2000 ± 0.04

DenseNet DARTS 8.4600 ± 1.30 0.24 ± 0.04

WRN DenseNet 5.7467 ± 0.33 0.1767 ± 0.02

WRN WRN 6.1567 ± 0.17 0.2200 ± 0.02

WRN DARTS 8.5433 ± 0.14 0.2233 ± 0.02

DARTS DenseNet 6.7833 ± 0.02 0.2233 ± 0.01

DARTS WRN 6.6767 ± 0.42 0.2067 ± 0.01

DARTS DARTS 7.7900 ± 0.30 0.2100 ± 0.01

Table 4.2: Experimental results of teacher-student pairings on CIFAR-10 using atten-

tion transfer. DARTS students typical under-perform, and teacher-student combinations

appear to be most effective when both models have similar architectures. Highlighted

in blue is the best performing pairing for each student. Each experiment was ran three

times.

Table 4.2 shows the results for our different teacher-student pairings. Generally,

DARTS students appear to perform poorly, particularly when paired with a WRN or
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DenseNet. Both WRN and DenseNet make good pairings for each other, with the best

performing pairing being a WRN teacher with a DenseNet student. DARTS students

performs best when a DARTS teacher is also used.

4.3 Distilling with a Fisher Expanded Student

After experimenting with combinations of our DARTS V1 model and pre-trained, off-

the-shelf networks, we then perform our Fisher expansion and distillation using the

Fisher-expanded DARTS V1-10 model as the teacher, and original DARTS V1-10

model as the student.

Model Parameters Top-1 Error Top-5 error

DARTS V1-25 1354980 6.85 0.16

DARTS V2-10-f-untrained 1459347 N/A N/A

DARTS V2-10-u 1428452 7.32 0.23

DARTS V2-10-f 1447460 6.91 0.2

Table 4.3: Details of each of the teacher models used for our Fisher expansion experi-

ments. Error bars are not shown as these are the individual models used for distillation.

The number of parameters for all models is within 2.5% of 1.4×106. f refers to a Fisher

expanded model. u refers to a uniformly expanded model. untrained denotes a model

that has not been trained before being used as a teacher.

We begin with a standard, DARTS V1-10 model, and repeatedly push individual

CIFAR-10 mini-batches through the model and decrease the group size of the highest-

scoring cells, as described in Chapter 3. The expansion process continues until our new

model is within 2.5% of 1.4×106 parameters, ensuring the approximate 2:1 teacher-

student size ratio is maintained. We refer to all base-models generated by reducing the

number of groups as DARTS V2. Generally, DARTS V2 models must then be trained

to be used to teach a student model with attention transfer. The details of all of the

teacher models used in the subsequent Fisher expansion experimentation, as well as

their performance on CIFAR-10, is shown in Table 4.3.

In order to gauge the effectiveness of our Fisher expansion approach, we also grow

the DARTS V1-10 model uniformly (DARTS V2-10-u), again reducing the number of

groups until the desired number of parameters is reached. The resultant model is also

trained using the same experimental setup, and used for distilling with a DARTS V1-
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10 student. Furthermore, we have experimented with using a teacher network that is

scaled up using our Fisher expansion process but has not been trained at all. By exper-

imenting with an untrained, Fisher expanded teacher (DARTS V2-10-f-untrained), we

can see how informative Fisher information is when trying to model a teacher network.

Comparisons between DARTS V2-10-f-untrained, DARTS V2-10-f, DARTS V2-10-

u and DARTS V1-25 should give a comprehensive understanding of the utility of our

approach. The results of using each of these teacher models for distillation with a

DARTS V1-10 student are shown in Table 4.4.

Teacher Student Top-1 Error Top-5 Error

N/A DARTS V1-10 8.4700 ± 1.11 0.2200 ± 0.04

DARTS V1-25 DARTS V1-10 7.7900 ± 0.30 0.2100 ± 0.01

DARTS V2-10-f-untrained DARTS V1-10 7.1050 ± 0.09 0.1400 ± 0.03

DARTS V2-10-u DARTS V1-10 6.4233 ± 0.17 0.1833 ± 0.06

DARTS V2-10-f DARTS V1-10 6.4033 ± 0.08 0.1333 ± 0.03

Table 4.4: Results of our expanded models. Using a teacher developed through our

Fisher expanded approach gives the best results with little variation in performance.

However a uniformly expanded model is also competitive. Interestingly, the DARTS V2-

10-f-untrained model is able to improve the performance of the student and has a very

competitive top-5 error. Each experiment was ran three times.

Most notably, the best performing performance is achieved by combining a DARTS V2-

10-f teacher with the DARTS V1-10 student, obtaining both the best top-1 and top-5

error. This result indicates that our Fisher expansion approach is very effective in

developing a suitable teacher from the student. The results also show that whilst

not as effective as a DARTS V2-10-f, a simple uniform expansion of the student

gives very competitive results (DARTS V2-10-u). Furthermore, the DARTS V2-10-f-

untrained model gives a reasonably poor performance, however, still outperforms both

a DARTS V1-25 teacher, and a DARTS V1-10 student trained without distillation.

Whilst using a DARTS V2-10-u teacher does give competitive results, there is

much more variation across runs (shown by the error bars) than when using a DARTS V2-

10-f teacher. This variation is seen in both the top-1 and top-5 error, suggesting that the

DARTS V2-10-f teacher may produce more consistent results. The DARTS V2-10-u

also has a poor top-5 error, despite top-1 error being strong.
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Discussion

5.1 Distilling With Off-The-Shelf Networks

5.1.1 Teacher-student Pairings

The results shown in Table 4.2 provide much insight into the application of DARTS

models — as well as the other models used — in a distillation setting. In general, it

seems that the best teacher for any student is simply a scaled-up version of the student.

This pattern of good distillation performance when using the same student and teacher

architectures was also observed by Crowley et al. (2018). One possible explanation

is that when both the teacher and student are using the same underlying architecture,

they are more likely to make similar predictions, and may well have similar activations

within each model. When using attention transfer (Eq. 2.9), the distillation process

tries to encourage the students’ attention map (spatial map of the activations) to be

similar to the teachers’ attention map. If the activations are too dissimilar, it may be

difficult to guide the student towards an effective representation. When the student

and teacher models are similar, the teacher may be able to guide the student in a more

nuanced and effective manner. In cases where the teacher activations are significantly

different from the student activations, on a local level, the teacher’s signal may be

somewhat contradictory to the signal obtained from the student. By visualising the

attention maps of our networks, it is possible to examine the effect of different teachers

on a student (Figure 5.1).

25
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No teacher, DenseNet student DenseNet teacher, DenseNet student

WRN teacher, DenseNet student DARTS teacher, DenseNet student

Figure 5.1: Visualisations of the activations for each DenseNet student model. The

DenseNet teacher reinforces the representation learnt by the student. As the teacher

becomes increasingly dissimilar from the student the learnt representation becomes

much less clear, resulting in a vague blur when a DARTS teacher is used. The acti-

vations are taken from the middle of the network. Specifically, an activation is taken at

each point the cell output reduces in size. These images are the 2nd of three points

where that occurs.

Figure 5.1 shows visualisations of the activations for multiple DenseNet config-

urations when a CIFAR-10 image of a plane is passed through each model. The vi-

sualisations offer a lot of insight into the impact of different teacher architectures on

the student; it is clear that when the teacher and student architectures are the same,

the network is learning something very similar to that which the student would learn
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independently. By incorporating a teacher of the same architecture, that learnt repre-

sentation is just reinforced, strengthening the ability of the teacher to recognise images.

As the teacher architecture diverges from the student architecture, the representation

is instead blurred, giving increasingly less distinct representations as the teacher goes

from DenseNet to WRN to DARTS. As mentioned previously, this blurring may be a

result of contradictory signals from the teacher and student, making it challenging to

learn an effective representation.

Interestingly, Mirzadeh et al. (2019) have a somewhat related hypothesis in their

work on knowledge distillation (see Section 2). The authors find that given a stu-

dent network of a fixed size, an arbitrarily large teacher cannot be used and that the

gap between student and teacher must not be too large. Their work is on knowledge

distillation and considers the differences in networks with regards to the number of

parameters, rather than differences in architecture. Nonetheless, these findings do sup-

port our hypothesis that teacher and student networks cannot vary too much from each

other and still perform well.

However, there is one exception to this trend within our experiments. In the case of

a WRN teacher and a DenseNet student, the average top-1 error is 5.75%. This result

is noticeably lower than when a WRN student is used with a WRN teacher (6.16%), al-

though the standard deviation in the WRN-DenseNet case is notably more significant.

This excellent performance may be a result of DenseNet’s connections to and from ev-

ery layer in the network, and concatenation of layer outputs, which reduce the number

of parameters required for the model to perform effectively. Consequently, the student

DenseNet may simply be a much more capable model than the WRN student, allowing

it to obtain a better result. However, it is still not clear why the WRN teacher gives

notably better results for a DenseNet student than a DenseNet teacher. The DenseNet

authors do note in later experiments1 that an effective dense model can take a very

long time to train using their standard setup, and suggest using a Wide-DenseNet in-

stead, with fewer layers and a high growth rate to achieve effective results with less

training. As all of our experiments were only limited to 200 epochs, it may be worth

experimenting with wider, shallower models to see if the WRN teacher and DenseNet

student combination maintains its performance. Additionally, further experimentation

would be needed to reduce the variation of results that are seen in this specific case.

However, as DenseNet and WRN both have a very similar underlying model based

upon the original ResNet architecture, these results still support our overall hypothesis

1https://github.com/liuzhuang13/DenseNet

https://github.com/liuzhuang13/DenseNet
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that similar models work best for distillation, explaining why the DARTS models give

significantly worse results when combined with a DenseNet or WRN teacher.

5.1.2 Distilling with Non-Standard Networks

Most notably, the results shown in Table 4.2 provide some insight into the effective-

ness of a non-standard model in a distillation setting. There are two clear takeaways

with respect to the DARTS models. Firstly, DARTS students (DARTS V1-10) tend to

perform significantly worse than WRN and DenseNet students, irrespective of which

teacher they were trained with. Table 4.2 shows that the best performing DARTS stu-

dent model has a top-1 error of 7.79, whereas WRN and DenseNet students are able

to reach top-1 errors of 6.1567 and 5.7467, respectively. Secondly, when used as a

teacher, the DARTS models give reasonably competitive results. Table 4.2 shows that

a DARTS teacher (DARTS V1-25) is able to reach a top-1 error below 7 when paired

with either a DenseNet or WRN student.

The generally poor performance of DARTS models when used as a student may be

a result of the models’ particularly non-standard architecture. As a result of the sub-

stantial differences in architecture when a DARTS student is used, it be may difficult

for the teacher network to accurately guide the student using attention transfer. These

large differences will be most prevalent when using a DARTS student, which is very

different from the ResNet base shared by both WRN and DenseNet. This hypothesis

is supported by the fact that training a DARTS student using a DARTS teacher gives

significantly better results when compared to using a WRN or DenseNet teacher with

the DARTS student. Even so, the DARTS teacher-student setup still has the worst

performance of all other experiments with a DARTS teacher. It seems that similarity

in architecture between the teacher and student is most important when the student is

non-standard. However, there may also be something fundamental about the DARTS

model that causes this reduction in performance that is not the result of substantial dif-

ferences between teacher and student architectures. This inherently poor performance

may simply be a result of the small size of the DARTS models; the original DARTS

paper trained their CIFAR-10 model for 600 epochs, with 64 channels and 20 cells.

Both the teacher and student models used in our experiments were smaller than that

in the original paper, suggesting that in order to utilise the DARTS architecture most

effectively, the model must be larger and trained for a more extended period. However,

further experimentation is required to either confirm or deny this hypothesis.
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5.2 Distilling with a Fisher Expanded Student

Table 4.4 shows results for our experiments using a Fisher expanded DARTS V1-10

model as the teacher using attention transfer. Our Fisher expansion approach gave the

best results for both top-1 and top-5 errors, suggesting that it is an effective approach

for expanding a student model. Interestingly, a uniformly expanded teacher also pro-

vides competitive results, although with a much higher standard deviation as well as a

higher top-5 error than the Fisher expansion approach.

No teacher, DARTS V1-10 student
DARTS V1-25 teacher, DARTS V1-10

student

DARTS V2-10-u, DARTS V1-10 stu-

dent

DARTS V2-10-f teacher, DARTS V1-

10 student
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Figure 5.2: Visualisations of the activations for each DARTS V1-10 student setup.

The uniform and fisher expansions appear to be learning something similar to the

DARTS V1-10 student, with the fisher expanded teacher giving the most distinct repre-

sentation. The DARTS V1-25 teacher appears to be learning something different to the

rest of the models, explaining its poor performance.

5.2.1 Visualising DARTS Teacher-Student Combinations

Figure 5.2 shows attention maps for each of the experiments shown in Table 4.4 on a

randomly selected CIFAR-10 image of a horse. As all of these models have a teacher-

student pairing that uses the same general architecture, there is noticeably less variation

in the models’ learning than in the attention maps shown in Figure 5.1. It seems that the

student trained using a Fisher expanded DARTS teacher (DARTS V2-10-f) has learnt

the most distinct representation, emphasising the outline of the horse while ignoring

some of the details in the legs. The student trained using a uniform expanded teacher

(DARTS V2-10-u) has also learnt a similar representation, although the horse outline

is not as distinct as in the Fisher expanded case, and some of the detail in the horse is

also lost. When using a DARTS V1 teacher and student, the horse-like representation

is still visible; however, it is significantly distorted. These visualisations support the

results in Table 4.4, showing that similar teacher-student pairings give the best perfor-

mance, and in particular, Fisher expansion is the most effective approach. Comparison

between the visualisations and results in Table 4.4 suggests that a learnt representation

that focuses on the outlines of key shapes in an image is probably most effective, and

by picking up on small details, such as in the no teacher, DARTS V1-10 student case,

the model’s ability to generalise may be impacted. As the DARTS V1-25 teacher has

significantly more layers than the DARTS V1-10 student, it is also the most different

from the original architecture, explaining the poor results and distorted image.

5.2.2 Evaluating our Fisher Expansion Approach

It is interesting that while the Fisher expansion approach outperformed all the other

models, using a uniform expansion also gave very competitive results. Examining the

Fisher expansion process on our DARTS V1-10 student shows that the Fisher expan-

sion process grew many of the earlier cells in the network, suggesting that these cells

have the most impact on the loss function, and, therefore, the models’ ability to learn an

effective representation. The uniform expansion process starts from the first cell in the
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network, reduces the number of groups, and moves to the next, reducing the number

of groups until the desired number of parameters is reached. As a result of the uniform

expansion starting from the first cell, and the Fisher information indicating that cells

early in the network are important, there is considerable overlap in the choice of cells

between the two approaches. It seems likely that Fisher expansion would give a much

larger performance gap when much larger models are being used, as the Fisher expan-

sion can be much more nuanced concerning the cells that are being expanded. In order

to test this, further experimentation is necessary using larger models. Additionally, the

effectiveness of our Fisher expansion approach can be further evaluated by comparing

to an alternative, naive expansion method, such as a random expansion. Using a ran-

dom expansion would minimise the likelihood of there being a lot of overlap between

the Fisher and naive expansion methods. Additionally, random search methods have

been shown to be quite powerful for NAS, consistently beating the start of the art (Li

and Talwalkar, 2019; Sciuto et al., 2019), and may, therefore, have some utility in our

case.

5.2.3 Distillation with an Untrained Fisher-expanded Model

Another interesting finding of our experimentation is that when using an untrained,

Fisher expanded teacher, the resultant model is capable of outperforming a DARTS V1-

10 model trained independently without any distillation, as well as a model distilled

using a DARTS V1-25 teacher. While using an untrained teacher does not give com-

petitive results, this finding follows from our previous discussion by highlighting that

it is the architecture that is most important for effective distillation. This result takes

our findings a step further, suggesting that the performance of the teacher network it-

self is not that important. As long as the architecture is compatible with the student,

it is possible to improve the performance of a smaller model using attention transfer.

Gaier and Ha (2019) have similar findings in a non-distillation setting, showing that it

is possible to have an effective model, regardless of the values of the models’ param-

eters and conclude that the architecture alone is often enough to achieve reasonable

performance. Their work uses a random initialisation and can find models that are ef-

fective on multiple basic reinforcement learning tasks without any further training of

the weights. In order to evaluate this result properly, more work is required, comparing

the use of untrained versions of many of the models used in this work.
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Conclusions

In this project, we have explored the impact of different teacher-student pairings for

network distillation, as well as proposed an effective approach for developing a teacher

network from a given student.

The results of our exploration of teacher-student pairings suggest that off-the-shelf

networks only make effective teachers when they are suitably similar to the student net-

work being trained. When the teacher and student are both from the same architecture,

the resultant student tends to perform well. When a non-standard student generated

through neural architecture search is combined with an off-the-shelf teacher architec-

ture, performance degrades significantly. However, when paired with a deeper version

of that same non-standard model, performance is notably improved, although it is still

not competitive. This finding shows that architecture similarity is very important when

determining an effective teacher-student pairing, and completes the first objective of

our project by showing that off-the-shelf teacher architectures are only effective when

the student is of a similar architecture. The results also suggest that there may be better

approaches to developing a teacher architecture for non-standard students than merely

scaling the depth of the network.

The second objective of this project was to identify an approach to modelling

a teacher network when given only the student architecture. The results from our

teacher-student pairing experimentation suggest that a depth-wise scaling of the stu-

dent is better than using some off-the-shelf alternative; however, it still does not pro-

vide competitive results. Consequently, we proposed a novel approach to growing the

number of channels in a student network that we call Fisher expansion. The Fisher ex-

pansion algorithm uses the Fisher information of cells in a network to identify which

cells have the most significant impact on the loss function and reduces the number of

32



Chapter 6. Conclusions 33

groups in those cells, effectively increasing the number of channels within the cell.

Using a teacher derived through a Fisher expansion of a non-standard student gave a

significant boost in performance over a depth-wise scaling of the student. We com-

pared our Fisher expansion approach to a simple uniform scaling of the channels in

the student and demonstrated that Fisher expansion offers the best performance. How-

ever, the uniform expansion was also notably more effective than a depth-wise scaling

of the student, suggesting that while Fisher expansion is most effective, a general ap-

proach of increasing the number of channels in the student network to create a teacher

is preferable to any depth-wise scaling. This finding follows on from our work on the

first objective, demonstrating that a teacher network that is most similar to the student

is likely to result in the best model. A teacher that is notably deeper than the stu-

dent may have very different activations, making it difficult for the attention transfer

process to guide the student effectively. By keeping the depth constant and, instead,

scaling the number of channels, the activations are more likely to remain similar, giv-

ing an increase in performance. We verify this intuition by examining the attention

maps of a range of models and demonstrate that using a teacher architecture similar to

student reinforces the learnt representation of the student and using a different teacher

architecture to the student appears to distort the learnt representation.

Furthermore, we have preliminary results that show that using an untrained, Fisher

expanded teacher is more effective than training the student independently, or training

the student using a teacher obtained through a depth-wise expansion of the student.

This finding supports all of our previous discussion by demonstrating that what is

most important when determining a teacher is the models’ architecture. Even when

the teacher is entirely untrained, an effective architecture can aid the learning process

of the student.

To conclude, we demonstrate that teacher-student pairings are only effective when

both the teacher and student have very similar architectures. We also show that our

proposed Fisher expansion algorithm is an effective approach to modelling a teacher

network when given a non-standard student.

6.1 Further Work

Following on from this project, there are many directions that may allow for a further

understanding of network distillation, particularly when using non-standard models

developed through neural architecture search.
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Firstly, as a result of the very competitive performance of a uniform expansion of

the student, it would be interesting to understand how effective a uniform expansion

can be, and in which cases our Fisher expansion approach is notably better. As dis-

cussed in Section 5.2.2, both the Fisher and uniform expansions similarly grew the

model in our specific case. As our student models were quite small, the majority

of early cells were expanded by each approach. By experimenting with much larger

models, the Fisher expansion will likely be able to able to make more nuanced cell

expansions, whereas the uniform expansion will blindly expand all cells equally. Con-

sequently, the Fisher expanded model will likely perform better in this case.

Additionally, it may be interesting to experiment with Fisher expansion on the off-

the-shelf networks in order to test how well Fisher expansion generalises to network

distillation as a whole, and not just the non-standard setting. Our results suggest that

a channel-wise scaling of the network is much better than depth-wise scaling. With

this in mind, it may be possible to outperform our off-the-shelf results through the

use of a teacher derived through a Fisher expansion. As well as experimenting with

off-the-shelf networks, experimentation with alternative NAS models, such as Effi-

cientNet (Tan and Le, 2019), may be informative in measuring the generalisability of

our approach.

It may also be possible to explore more nuanced equivalents of our Fisher expan-

sion by using the Fisher information on the level of individual channels in the network.

Similar to Fisher Pruning, this would find the channels that are most impactful on the

loss function and create multiple copies of that same channel. Growing individual

channels would allow the weights of the network to be maintained, and the pruning

methodology of prune, fine-tune, prune, could be applied.

Furthermore, we experimented with using an untrained, Fisher expanded model

as the teacher and found that it offers an improvement over a student trained without

distillation. More work should be carried out investigating the use of untrained teacher

models to determine how widely these findings can be generalised, as well as trying to

understand further why an untrained model can aid the student in some way.

Finally, the best performing teacher-student pairing was that of a WideResNet

teacher and DenseNet student. Further work should be carried out with this pairing

to understand why, in this case, a subtly different teacher to the student was able to

outperform using the same architecture for both teacher and student. Further work

should also be carried out to test the generalisability of our approach by testing Fisher

expansion on larger datasets, such as ImageNet Deng et al. (2009), on alternative tasks,
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such as semantic segmentation, as well as with knowledge distillation.
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